Established in 2020 Wednesday, April 17, 2024


Study sheds light on photosynthesis in iron-low leaves
A normal leaf’s nutrient distribution. Bottom, distribution in a light-bleached mutant leaf. Image courtesy: Nabila Riaz.



HANOVER, NH.- Researchers have identified how iron-deficient plants optimize photosynthesis to protect themselves from absorbing too much light, according to a new study published in Proceedings of the National Academy of Sciences.

The research comes as the globe considers the effects of climate change on how food is grown.

"This study adds to what we know about how plants respond to environmental change at a critical time for our human food supply," says Mary Lou Guerinot, professor of biological sciences and senior researcher of the study.

Iron is central to photosynthesis, the process that converts light energy into chemical energy in plants. Since people obtain a majority of their calories and nutrients from plants, it is important that researchers understand how plants process the mineral.

The research focuses on activity in chloroplasts, where 90% of the iron in plant leaves is stored and where photosynthesis takes place.

"Many strategies to optimize iron usage have been documented, but we knew fairly little about the mechanisms of how chloroplasts adapt to iron deficiency prior to this study," says Garo Akmakjian, Guarini '18, lead author of the paper and now a postdoctoral researcher at the University of California, Riverside.

The research team, which included Nabila Riaz, Guarini '22, followed the cause of light-induced leaf bleaching observed in an iron-deficient plant. They identified two regulatory proteins that protect plants from absorbing too much light during iron deficiency.

Technical images taken by Riaz demonstrate the way iron and other nutrients react to the absence of the regulatory proteins.

"Being able to use advanced technology to image where nutrients are localized in living plant tissues is exciting and increases our understanding of how elements distribute themselves in response to environmental changes," says Riaz.

The iron uptake system in plants is regulated by a cascade of activities, many of which have been discovered by Dartmouth's Guerinot Lab.

The team hopes that understanding how plants adapt their photosynthetic machinery during iron deficiency may allow researchers to optimize plant growth in soils where iron is not naturally available.

"With climate change, where and how we grow crops is changing," says Guerinot. "In the future, we won't have the luxury of only growing crops in fertile soils rich in nutrients and with plenty of water."







Today's News

October 13, 2021

Scientists discover a highly potent antibody against SARS-CoV-2

Genetic study explores how human pregnancy is unique

Chemists discover faster-acting forms of insecticide imidacloprid

Researchers say fossil shows humans, dogs lived in C. America in 10,000 BC

Antiviral compound blocks SARS-CoV-2 from entering cells

Researchers identify universal laws in the turbulent behavior of active fluids

Brain damage caused by long stays in space

Study explores adaptation in island, mainland anoles

ESO images some of the biggest asteroids in our Solar System

Power walk: Engineers develop powered exoskeleton to help amputees walk with less effort

New scientific resource will help uncover the genetic underpinnings of type 2 diabetes

Lightning strikes may trigger short-term thinning in the ozone layer

Few adverse health effects in wildlife exposed to low levels of radiation from the Fukushima nuclear accident

Teaching ancient brains new tricks: New research shows how modern physicists think

Precision medicine data dive shows water pill may be viable to test as Alzheimer's treatment

Research points to a strategy for overcoming colorectal cancers' immunotherapy resistance

To probe an unexplored space of hard problems, researchers play the devil's advocate

Study sheds light on photosynthesis in iron-low leaves



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful